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Abstract – Evaluati on of biomedical signals is important in 
the diagnosis of numerous diseases, chiefly in cardiology 
through the use of electrocardiograms, and to a more 
limited extent, in neurology through the use of 
electroencephalograms.  While automated techniques 
exist for both ECG and EEG analysis, it is likely that 
additional information can be extracted from these 
signals through the use of new methods.  A chaotic 
method for analysis of signal analysis variability is 
presented here that identifies the degree of variability in 
the signal over time.  A second focus is to develop higher 
order decision models that can incorporate these results 
with other clinical parameters to represent a more 
comprehensive view of the disease state, using a neural 
network model.   
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I. INTRODUCTION 

 
Signal analysis data alone can contribute important 
information for diagnosis and tracking of disease.  
Electrocardiogram (ECG) results have made major 
contributions to cardiac diagnosis [1].  The electro-
encephalogram (EEG) is useful in neurological diagnosis, but 
to a lesser degree [2].  However, improved methods of 
analysis may produce additional aspects that are useful [3].  
In many cases, combination of signal analysis data with other 
clinical information results in a more comprehensive analysis.  
The automation of the entire process requires the construction 
of higher order processing methodology in which signal 
analysis results can play a major role.  Several possible 
methodologies exist, including knowledge-based approaches, 
data-based approaches, and hybrid systems.  In data-based 
approaches, neural networks offer a number of advantages for 
producing a robust and comprehensive model.  Variables 
from many sources and many data types can be input to the 
network without requirements of independence of variables. 
 Two models are described.  The first is a method for 
evaluating the variability in a signal using continuous chaotic 
modeling [4].  The results of the chaotic modeling can be 
used directly as an indicator of disease.  The second method 
is a neural network model [5] that can be used in two ways:  
multiple chaotic parameters can be combined, each as an 
input node to the network, or chaotic parameters can be 
combined with other clinical information in the input nodes.  
The methodology is illustrated in applications to both ECG 
and EEG data.   

II. METHODOLOGY 
 
A. Chaotic Analysis of Signals 
 
 In previous work, the authors developed a conjectured 
solution to the logistic equation that demonstrated that 
viewing seemingly chaotic systems from a continuous rather 
than a discrete perspective changed the perception of chaos in 
the system [4].  Using the continuous approach to chaotic 
modeling, a method for analysis of chaotic systems, in 
particular time series, was developed.  The basis of this 
method is the second order difference plot.  At time n, the 
value of the time series is an.  The second-order difference 
plot is an+2 -an+1  versus an+1-an.  Fig. 1 shows a second-order 
difference plot for a patient with congestive heart failure 
(CHF).  While this visual display is quite useful, it does not 
present a means of developing a more comprehensive model 
that can incorporate clinical parameters.  For this reason, a 
number of summary measures were developed that can 
provide a numerical representation of the plot.  The major 
summary device for the second-order difference plot is the 
Central Tendency Measure (CTM) that shows how closely 
points are clustered around the center.  The plot in Fig. 1 
shows concentric circles of radii 0.2, 0.4, 0.6, and 0.8.  The 
CTM calculates the number of points within the circle for the 
radius specified by the user.  Let t = total number of points, 
and r = radius of central area.  Then 
 
    t-2 
 CTM = [ Σ   δ (di) ]/(t-2)           (1) 
    i=1 
 
where δ(di) = 1 if [(a i+2-ai+1)2+(ai+1-ai)

 2].5 < r and 0 otherwise. 
 

 
 

Fig. 1:  Second-Order Difference Plot for CHF Patient 
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B. Neural Network Model 
 
 In previous work by the authors, a non-statistical 
approach to neural network modeling, Hypernet, was 
developed based on a potential function approach to 
supervised learning, which uses the new class of Cohen 
orthogonal functions as potential functions.  This approach 
has been applied to numerous medical applications over the 
last decade [5].  The basic neural network structure of 
Hypernet consists of three layers:  the input layer, the hidden 
layer, and the output layer.  Input nodes can be of any type as 
long as an ordering exists, including binary, categorical, 
integer, or real.  The method generates a decision function of 
the form 
 
   n       n    n 
D(x)  =  Σ  wi xi   +   Σ  Σ  wij xij               (2) 
  i=1      i=1 j=1 i≠ j 

 

where xi  indicates the value of contributing node i, wi 
indicates the weight associated with the node, and wij 
indicates the weight from the hidden layer to the output layer, 
which represents the interaction of nodes xi and xj. 
 

III. RESULTS 
 
A. Electrocardiogram Analysis 
 
 For all ECG studies described in this section, Holter tape 
data were used.  Patients suspected of having cardiac 
problems are often asked to wear Holter monitors, which are 
portable devices used make ECG recordings, usually for a 24-
hour period.  The Holter tapes typically contain in the vicinity 
of 100,000 points.  The method of recording used here 
consists of the time of each heart beat, a code indicating the 
status of the recording, two codes indicating possible 
arrhythmias, and the time between heart beats (R-R 
intervals).  In this analysis, only the last variable, the R-R 
interval, is used.  The rate of change of the heart rate 
variability is obtained from the second-order differences 
where an represents the R-R interval at time n.  An overall 
CTM measure is then computed.  Computation of the CTM 
for a file containing in excess of 100,000 points takes 
approximately 30 seconds on the SUN SPARCserver 470 
which is used for the CTM calculation as well as Hypernet.  
Both algorithms can also be run on PC’s.  
 
Model Using Chaotic Parameters Alone 
 
 Initial studies were made to determine if the CTM gave 
useful information in differentiating patients with congestive 
heart failure (CHF) from normal controls.  For this purpose, 
CTM measures were computed using (1) with r = 0.1.  Table 
I shows the results of two studies.  Although the difference in 
means on the second study was statistically significant [6], 
the ranges on the first study indicate significant overall of 
CHF and normal subjects [7].  For this reason, expanded 
studies were undertaken to include additional parameters. 

TABLE I 
EVALUATION OF CTM MEASURE, CTM(r=0.1) 

 
GROUPS(n)   NORMAL       CHF  
 
CHF (22), Normal (22) Range 0.623-0.997     0.154-0.987 
   Mean 0.90       0.81 
 
CHF (26), Normal (28) Mean 0.90         0.69    (p<.01) 

 
 

Models Using Chaotic Parameters and Clinical Data 
 In the next set of studies, two different approaches were 
taken.  Multiple CTM measures were used as input to the 
neural network to develop a decision function for 
differentiation between two groups.  In addition, clinical 
parameters were collected that could be combined using the 
neural network for a more comprehensive model.  Table II 
shows the data collection sheet for the clinical parameters.  
Table III shows results from four different studies. 
 In study 1 [8], 32 CHF patients were compared with 32 
patients with other types of heart disease.  The use of CTM 
(r=0.1) alone resulted in low sensitivity but high specificity in 
the identification of CHF patients.  Combination of this 
measure with clinical parameters in a neural network model 
increased sensitivity and overall accuracy to over 80%. 
 Study 2 [9] compares 25 CHF patients with 27 normal 
controls using a neural network model with 4 measures 
derived solely from the ECG analysis.  These included three 
CTM measures, as well as the total number of R-R intervals 
in a fixed time period.  Sensitivity, specificity, and accuracy 
were all over 80 %. 
 

TABLE II 
CLINICAL DATA COLLECTION 

 
 SYMPTOM   TYPE 
 
 History of bypass    Y/N 
 History of MI   Y/N 
 Presence of symptoms 
  Dyspnea   Y/N 
  Orthopnea   Y/N 
  PND   Y/N 
 Duration of symptoms  continuous (minutes)  
 Physical Findings 
  Resting heart rate  continuous 
  Edema   Y/N 
  Rales    Y/N 
  Gallup   Y/N 

Mitroregurgitation  Y/N 
 Functional impairment (NYHA) (1-3) 
 LV ejection fractio n  % 
 Echo    Normal/Abnormal 
 Exercise time   continuous (minutes)  
 Holter Data   Y/N 
 Electrolytes (Na, K, Mg, BUN, Cr) continuous (for each) 

K  continuous 
Mg  continuous 
BUN  continuous 
Cr  continuous 

 Drugs  (Digitalis, Diuretic, ACE Y/N (for each) 
  Inhibitor, Vasodilators,  
  Anti-arrhythmic) 

URI/Viral Syndrome  Y/N 
 



TABLE III 
HOLTER TAPE CLASSIFICATION RESULTS 

 
Groups(n)  Variables  Sensitivity Specificity Accuracy 
 
C (32), O (20) CTM Alone (r=0.1)      69%      91%      74% 
  CTM with CI*       84%      82%      84% 
 
C (25), N (27) Combined Holter**      80%      89%      85% 
 
C (52), N (32) Combined Holter**      83%      88%      85% 
 
CS (22), CD (22) CTM (r=0.1), CI***      80%      94%      88% 
 
*CI (clinical information): edema, rales, heart rate, BUN 
**Holter measures: CTM(r=0.05), CTM(r=0.1), # of RR intervals, lowest 
value CTM > 0.99 
***CI: symptom status (decreased, stable, increased), BUN, orthopnea, 
dyspnea at rest, heart rate, edema, functional impairment (levels 1-3), PND 
 
C:  Congestive Heart Failure 
N:  Normal Control 
O:  Other Heart Disease 
CS:  Congestive Heart Failure, Surviving 
CD: Congestive Heart Failure, Deceased 
 
 Study 3 repeated study 2 with a larger sample size with 
slightly improved classification results [10]. 
 Study 4 is a survival analysis that compares 22 surviving 
CHF patients with 22 deceased CHF patients in an attempt to 
identify parameters that are predictive of survival [11].  In 
this model, CTM (r=0.1) and 8 clinical parameters are used in 
a neural network model. 
 
B. Electroencephalogram Analysis 
 
 The traditional approach to EEG analysis, Fourier analysis, 
provides a quantitative tool to examine signal frequencies and 
their relative loads.  It is almost certain that the conventional 
Fourier analysis cannot represent the entire spectrum of 
biological activities.  The more comprehensive linear and 
nonlinear analyses of the EEG signals proposed here not only 
have practical utility but can also open new windows for 
studying the significance of the EEG signal in the 
understanding of the basic neurophysiological functioning of 
the human cerebral cortex and the visual detection of 
paroxysmal events such as spikes or sharp waves have been 
the mainstay of clinical neurological interpretation of EEG 
recording.  EEG analysis is much more complex than ECG 
analysis in that no repeating pattern exists.  There are, 
however, recognizable wave patterns that appear at 
indeterminate intervals.  
 In preliminary studies, the  EEG signal was recorded using 
the Nihon Kohden Corporation Electroencephalograph Model 
Number EEG-4314B.  It has a capacity of up to 21 channels 
with 2 additional marker channels.  A supplemental test 
system has been designed, implemented, and tested for 
digitizing EEG data for analysis.  A Lab Master 
analog/digital board form Scientific Solutions has been 
connected to the electroencephalograph.  It is a two-channel 
single-ended board with 12-bit resolution and a sampling rate 
of 250/second.  Output from the A/D board is sent to a PC 

computer and is then transferred to the SUN Ultra Enterprise 
Server 450 for detailed analysis. 
 To date, EEG recordings have been digitized for 6 patients 
and 2 normal controls. Data were collected at a rate of 250 
samples/second with a periodic 2-second delay for storage 
requirements.  Digital EEG runs lasted approximately 10 
minutes and consisted of approximately 75,000 points.  Each 
data point consists of a consecutive number and two channels 
of output.  The output value for each channel is a positive or 
negative integer indicating the current amplitude.  Two 
channels are selected from the 21 available for this 
preliminary analysis.  The channels selected for recording 
were T3-T5 and T4-T6.  T3 to T6 are based on standard EEG 
electrode placement.  T3-T5 locates over the left temporal 
area with T4-T6 over the right. 
 Two methods of analysis were used:   
 The second order difference plot was generated based on 

each point in the time series.  This analysis is based on 
amplitude values indicating the level of electrical activity.  
These results are shown in Table IV. 

 A peak algorithm was designed to determine the 
occurrence of significant peaks [12].  Time between peaks 
was used as an, the nth point in the series, to generate the 
second-order difference plot.  This analysis is based on 
frequency values of the occurrence of the peaks.  Results 
are shown in Table V. 

These preliminary studies demonstrate the feasibility of using 
the CTM for EEG analysis.  Current studies are underway to 
collect additional patient data from three different clinical 
sources.  These data will be randomly divided into a training 
set and test set.  The training set will be used to establish a 
decision model using the Hypernet neural network.  The test 
set will be used to evaluate the model to determine if these 
results have clinical significance.  Additional testing is 
underway to determine if preprocessing of using wavelet 
analysis will contribute to the EEG analysis by permitting the 
selection of peaks at varying amplitudes.   
 

IV. DISCUSSION 
 
 Chaotic analysis of ECG data using the second-order 
difference plot and the central tendency measure show that 
the CTM measure is an important factor in the identification 
of congestive heart failure as a stand-alone indicator.  
Effectiveness of the classification, however, is significantly 
enhanced by the use of a neural network model, which allows 
 

TABLE IV 
POINT-BY-POINT EEG ANALYSIS, r = 0.1 

 
  CATEGORY    CTM 
  Normal     0.54 
  Normal     0.71 
  Alzheimer     0.81 
  Alzheimer     0.40 
  Alzheimer     0.67 
  Alzheimer     0.60 
  Alzheimer     0.68 
  Alzheimer     0.58 
 



TABLE V 
SAMPLE PEAK ANALYSIS, r = 0.5 

 
  CATEGORY    CTM 
  Normal     0.29 
  Normal     0.57 
  Alzheimer     0.52 
  Alzheimer     0.62 
  Alzheimer     0.28 
  Alzheimer     0.44 
  Alzheimer     0.40 
  Alzheimer     0.18 

 
 
either the incorporation of multiple chaotic measures in the 
same model or using the chaotic measures in conjunction 
with clinical information.  The CTM measure has been shown 
to be an effective classification parameter in differentiating 
between CHF and normal controls, between CHF and other 
heart disease, and in a predictive survival model for CHF 
patients.  In the ECG analysis, the CTM measure is based on 
the variability of the length of the R-R interval, and is thus 
based on time parameters alone.  In previous work of the 
authors, the CTM measure was used to analysis 
hemodynamic data from the hepatic system in an animal 
model in which the second-order difference plot and 
subsequently the CTM measure were derived from amplitude 
information alone, with the amplitude representing the 
volume of blood flowing at each point in time [13].  Thus the 
method shows extensibility for the evaluation of different 
types of signals.   
 EEG analysis poses particularly difficult problems in the, 
while events do occur, they do not occur at prescribed 
intervals.  In addition, very little is known about the 
neurological significance of the overall EEG signal.  In spite 
of this, significant information can be derived from the timing 
of wave events in the EEG and of the occurrence of these 
events in multiple EEG channels.  The timing of these events 
can be addressed in a manner similar to the R-R interval 
analysis in the ECG with results in the time domain.  In 
addition, amplitude information may also be of importance as 
in the hepatic blood flow analysis.  At this point, we are 
investigating both of these possibilities.  Early studies 
demonstrate that these approaches are indeed feasible.  More 
extensive subject recruitment is underway to determine if this 
approach will lead to significant clinical findings.  In the final 
model, the chaotic summary measures will be combined with 
clinical data including evaluation of mental function, family 
history, and genetic predisposition to form a comprehensive 
classification model similar to the heart failure model. 

 
V. CONCLUSION 

 
 At the basic level, additional techniques for the analysis of 
biomedical signals are needed.  Chaotic approaches have 
shown promise in providing new insight into these analyses.  
The CTM approach described here has shown promise in the 
evaluation of cardiac disorders and hemodynamic studies, 
and appears to be a promising avenue for EEG analysis.  To 
develop comprehensive classification models, the results of 

the signal analysis must be incorporated in to higher-level 
decision models, such as the neural network structure 
described here.  The neural network model provides not only 
classification results in terms of sensitivity, specificity, and 
accuracy, but also identifies variables that are important in 
the decision process along with a weight for each of these 
variables. 
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